CRISPR reveals genetic master switches behind butterfly wing patterns
Recent work by Rachael Lallensack published in Nature, 18 September 2017 has shed light on the way in which the intricate patterns on butterfly wings form. It had been thought that the process of generating the beautiful and complex patterns on butterfly wings might be due to the action of a multitude of different genes. Recent studies, however, seem to indicate that only two genes are responsible for these remarkable colors and patterns. Interrupting the functioning of these genes (WntA, one of the earliest genes to be discovered to be involved in patterning and optix, which had been implicated but the involvement of which had never been directly confirmed) using crispr/cas9, resulted in ‘dulling the colours or turning the insects monochromatic’. Understanding how wing patterns form yields significant insight into the evolution of traits.
Exalpha offers numerous products for WNT/ LEF research and the TCF/LEF family of proteins. The TCF/LEF family is a group of transcription factors which bind to DNA through a high mobility group domain. They are involved in the Wnt signaling pathway, where they recruit the coactivator beta-catenin to enhancer elements of genes they target. Lymphoid Enhancer Factor -1 is a transcription factor of the High Mobility Group of DNA binding proteins. It is one member of a family of four proteins referred to as LEF/TCF transcription factors (LEF-1, TCF-1, TCF-3 and TCF-4). These factors play a crucial role in WNT/Wingless signaling, a signal transduction cascade that directs cell differentiation. Aberrant activation of the WNT/Wingless pathway is also a root cause in the genesis of certain cancers such as colon cancer, melanoma and breast cancer. LEF-1 is expressed during development in many different differentiating tissues, and in a few tissues after birth. LEF-1 expression is required for proper development of breast, teeth, hair, whiskers and the trigeminal nerve. It is redundant with TCF-1 (for T Cell Factor-1) for correct development of T lymphocytes in the thymus.